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Abstract
The very recent use of first-principles-based simulations to investigate zero-dimensional
ferroelectrics has led to the discovery of electric vortices, as well as of many original properties
associated with these vortices. These original properties are of fundamental importance and of
high technological promise, and are reviewed here.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Dipole vortices in zero-dimensional magnets have attracted a
lot of attention in the last seven years, and are being intensively

studied both experimentally and theoretically by many
different groups for fundamental and technological reasons
(see, e.g., [1–6] and references therein). Such a situation
contrasts with that occurring in another kind of dipolar
nanostructures, namely zero-dimensional ferroelectrics. As a
matter of fact, it is only four years ago that first-principles-
based calculations predicted the existence of dipolar vortex
structures in nanoferroelectrics [7, 8], and we are still awaiting
the experimental confirmation of such fascinating structures
(note, though, that major steps towards the experimental
discovery of dipole vortices in ferroelectrics have been
accomplished in the last two years [9, 10], which suggests
that such discovery may occur rather soon). Similarly, only a
few theoretical studies have been aimed to predict properties
associated with dipolar vortices in nanoferroelectrics or,
equivalently, the consequences of the existence of such
vortices [7, 8, 11–17]. One major reason for this scarcity
is that one needs a simulation tool able to accurately predict
properties of ferroelectric nanostructures, which is quite a
challenge.

The aims of this review are to discuss some of these
recent studies and their predictions [7, 8, 11–17], as well as to
describe the numerical method that allowed these predictions.
This review is organized as follows: section 2 provides
details about the effective Hamiltonian method that has been
developed and/or used in these studies; section 3 describes the
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morphology of dipole vortices in isolated nanoferroelectrics,
and its dependence on the size and shape of the nanoparticle,
the material from which the nanoparticle is made of, and its
electrical boundary conditions; section 4 emphasizes the need
for introducing an original order parameter to describe such
vortices, namely the electric toroidal moment; section 5 is
devoted to unique strain characteristics associated with dipole
vortices; sections 6 and 7 deal with the existence of novel
tensors resulting from the coupling of the electric toroidal
moment with other physical quantities; section 8 describes
an original path connecting the vortex and polarized states;
section 9 is about the control of the chirality of the dipole
vortices; section 10 discusses novel phases occurring in an
array of ferroelectric dots embedded into a polar matrix; finally,
section 11 concludes this review.

2. Effective Hamiltonian approach for
zero-dimensional ferroelectrics

Stress-free zero-dimensional ferroelectrics made of disordered
PbZr1−x TixO3 (PZTx) systems, being Pb–O terminated at
all surfaces, were studied. Stress-free zero-dimensional
ferroelectrics made of BaTiO3 (BT), being Ba–O terminated at
all surfaces, were also investigated, for the sake of comparison
with PZTx zero-dimensional ferroelectrics. The total energy of
such systems was written as

Etot(ui , vi , ηH) = EHeff(ui , vi , ηH) + 1
2β

∑

i

〈Edep〉 · Z∗ui

−
∑

i

E · Z∗ui − a3
∑

j

σ jηH, j (1)

where ui is the local soft mode in the unit cell i of the zero-
dimensional ferroelectric—whose product with the effective
charge Z∗ yields the local electrical dipole, {pi }, in this cell;
ηH is the homogeneous strain tensor (that characterizes the
average elastic deformations of the whole system); vi are the
inhomogeneous strain-related (acoustic-type) displacements
in unit cell i , which describe the remaining (that is, after
subtraction of the homogeneous part) elastic deformations
inside the system [18]. Here, the six components of ηH in Voigt
notation [19] are denoted as ηH, j , where j can run from 1 to 6.

EHeff represents the intrinsic (effective Hamiltonian)
energy of zero-dimensional ferroelectrics. Its analytical
expression is that of [18] for BT bulk and of [20] for
PZTx bulk (while its first-principles-derived parameters are
those of [21] for BT and of [20] for PZTx), except
for two main modifications. The first modification
consists in adding energetic terms associated with the
direct interaction between the vacuum surrounding the zero-
dimensional ferroelectric and both the surface dipoles and
inhomogeneous strain near the surface [7, 22]. The
second modification consists in replacing the (reciprocal-
space-based) matrix associated with long-range dipole–dipole
interactions in the bulk [18] by the corresponding (real-space-
based) matrix characterizing dipole–dipole interactions in the
zero-dimensional ferroelectric—implying that no supercell
periodic boundary conditions are needed to simulate the zero-
dimensional ferroelectric. Such a matrix is given in [11, 23]

and corresponds to ideal open-circuit (OC) conditions, for
which no possible screening of the polarization-induced
surface charges can exist. Such electrical boundary conditions
naturally lead to the existence of a maximum depolarizing field
(denoted by 〈Edep〉 and determined from the atomistic approach
of [11]) inside the zero-dimensional ferroelectric for a non-
vanishing polarization.

The second term of equation (1) mimics a screening of
〈Edep〉 via the β parameter. More precisely, the residual
depolarizing field resulting from the combination of the first
and second terms of equation (1) has a magnitude equal to
(1−β)|〈Edep〉|. β = 0 thus corresponds to ideal OC conditions,
while an increase in β lowers the magnitude of the resulting
depolarizing field. β = 1 corresponds to ideal short-circuit
(SC) conditions for which the depolarizing field has vanished
(that is, for which all the polarization-induced surface charges
are screened).

The third and fourth terms of equation (1) represent the
effect of an electric field, E, and applied stress, σ , on properties
of the investigated system, respectively [24]—with a being
the five-atom lattice constant at 0 K and the sum over j in
the fourth term running from 1 to 6 (as consistent with Voigt
notations).

This effective Hamiltonian was used within both Monte
Carlo (MC) and molecular dynamics (MD) simulations. In the
MC scheme, the equilibrium dipolar and strain patterns were
found by using a large number of MC sweeps (typically of
the order of 40 000) to first equilibrate the system and then
compute statistical averages—at each temperature, electric
field and/or stress value. In order to find the dipolar pattern
of the ground state, the temperature was decreased in small
steps starting from high temperatures (for which the long-
range dipolar order is absent). Within the MD technique,
an alternating (ac) electric field was usually applied, and
statistical quantities were computed as a function of time. As
a result, hysteresis loops of the order parameters versus the
field’s value were obtained. Note that these MD simulations
correctly reproduce the transition temperatures obtained within
the MC approach, and also provide a good agreement with
experiments for the soft mode frequency in bulk PZT [25].

3. Dipole vortices in zero-dimensional ferroelectrics

As discovered in [7, 8], stress-free ferroelectric nanodots
under open-circuit conditions exhibit a ground-state structure
consisting of a vortex for their local dipoles. Such a striking
ground state is shown in figure 1 for the 12 × 12 × 12
BT (a) and PZT60 (b) dots, i.e. for two cubic nanodots
of lateral size around 48 Å, as predicted by the effective
Hamiltonian method described in section 2. Figure 1 indicates
that no spontaneous polarization exists for the ferroelectric dots
exhibiting the vortex pattern. This contrasts with magnetic dots
for which a dipole vortex also exists but with a core possessing
a magnetization [26]. The reason behind such a difference
most likely lies in a stronger short-range interaction and weaker
cubic anisotropy in magnets in comparison with ferroelectrics.

We decided to compare in figure 1 the dipole patterns
obtained in 12 × 12 × 12 BT and PZT60 dots, mainly to
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Figure 1. Dipole pattern, at 10 K, in 12 × 12 × 12 stress-free
BaTiO3 (a) and PZT60 (b) dots under OC electrical boundary
conditions. The arrows show the direction of the dipole moments in
the primitive unit cells. The x-, y- and z-axes are also indicated.

know if the fact that PZT60 and BT bulks have different ground
states with dipoles lying along different directions affects the
vortex structure in the corresponding nanodots (BT bulk has
a rhombohedral ground state with dipoles pointing along a
〈111〉 direction [18] while the 〈001〉 directions are the possible
directions for the polarization in the tetragonal ground state
of bulk PZT60 [27]). Interestingly, and as indicated in [15],
figure 1 reveals that the direction about which the vortex in
the dots rotates is a possible direction of the polarization in
the bulk. In other words, the direction of the vortex in the
PZT60 nanodots is along a 〈001〉 direction while it is along
a 〈111〉 direction in the BT dot. Figure 1(b) further tells us
that one can also think of the vortex structure of the PZT60
ferroelectric dots as being made of four different domains,
each having dipoles aligned a specific 〈001〉 direction, with
90◦ domain walls between the domains—which is a solution
that was actually proposed many years ago by Kittel [28].

The shape of the nanodots also influences the dipole
vortices, as has been shown in [8, 15, 29]. In particular,
elongated dots can have several vortices with alternating
chirality [8, 15]. Another source that affects the dipole
vortex structure is the size of the nanodot, as emphasized by
comparing figure 1(a) with figure 2—that displays the dipole
pattern obtained in a 24 × 24 × 24 BT nanodot at 10 K [7]. In

x y
z

Figure 2. Dipole pattern, at 10 K, in a stress-free
24 × 24 × 24 BaTiO3 dot under OC electrical boundary conditions.

this latter structure, the dipoles in the core of the dot organize
a vortex about a 〈111〉 direction while additional vortices (that
are absent in the small dot, see figure 1(a)) rotating about a
〈001〉 direction also form around each middle of the 12 cubic
edges. Such a peculiar pattern yields the two cross-sections
depicted in figure 3, that are a cross-section about the (111)
plane passing through the dot’s center (figure 3(a)) and a cross-
section about the (001) plane corresponding to the 13th (001)
atomic plane from the top of the dot (figure 3(b)).

Furthermore, it was previously shown [11] that the dipole
vortices can occur even if a rather large amount of the
maximum depolarizing field is screened by, e.g., external short-
circuited metallic plates. Figure 4 shows the total energy of
a PZT60 12 × 12 × 12 cubic nanodot as a function of the
β parameter defined in section 2, and obtained at 1 K. As
discovered in [11], two kinds of dipole pattern exist: for large
β the dot is polarized, while β smaller than �0.9 gives rise
to the vortex structure. These two patterns are schematized
in the insets of figure 4. Interestingly, decreasing β from its
ideal-short-circuit value of unity first results in decreasing the
total energy of the polarized dot in response to the increasing-
in-magnitude depolarizing field (with the dipoles decreasing in
magnitude when β decreases). Then, as soon as the vortex
structure is created, the average electric field inside the vortex
pattern is null, and thus no depolarizing field exists. As a
result, the total energy (as well as the magnitude of the dipoles)
does not depend on β anymore. One can also view figure 4
as displaying two straight lines (that intersect for β � 0.9)
that describe the dependence of the total energy on β for
two different states, respectively, that is for the polarized state
versus the vortex state. The fact that these two lines have very
different slopes and intersect indicates that the β-driven phase
transition from the polarized to the vortex state is of first order.
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Figure 3. The cross-section of the dipole pattern, at 10 K, in a
stress-free 24 × 24 × 24 BaTiO3 dot under OC electrical boundary
conditions in a specific (a) (111) plane and (b) (001) plane.

4. Toroidal moment associated with dipole vortices in
zero-dimensional ferroelectrics

As indicated in section 2, outputs of the effective Hamiltonian
simulations include the local dipole moments, {pi }. Such
outputs allow the computation of the following quantities:

〈P〉 = 1

Nv

∑

i

pi

g = 1

2Nv

∑

i

ri × δpi

G = vg

(2)

where v is the volume of the five-atom primitive unit cell, and
ri locates the center of unit cell i . 〈P〉 is the polarization. δpi

is the difference between the dipole at cell i and the averaged
(over all the cells) dipole, that is δpi = pi −v〈P〉. The quantity
G is the so-called toroidal moment, which has been recently
defined and investigated from phenomenology [30, 31] and
first-principles-based computations [8, 11]. g provides the
toroidal moment per unit volume. G or g can be considered
as the right order parameter to characterize the formation and
evolution of dipole vortices in ferroelectric dots, unlike the
polarization (that vanishes for electric dipole vortices) [8, 11].
Interestingly, g (and thus also G) is an axial vector in
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Figure 4. The dependence of the total energy, at 1 K, in a stress-free
12 × 12 × 12 dot of PZT60 (under OC electrical boundary
conditions) on β. The insets show the corresponding stable dipole
patterns.

ferroelectric dots, and thus neither changes under the inversion
of space nor is altered under time inversion symmetry [30]. On
the other hand, because of the difference in symmetry between
electric dipoles versus magnetic dipoles, the toroidal moment
of magnetic dots is a polar vector and thus breaks both the
space and time inversion symmetry [32].

For the vortices shown in figure 1(b), the direction of g
in the PZT60 dot coincides with one of the 〈001〉 axes. Due
to the cubic shape of this dot, the toroidal moment can also
be parallel or antiparallel to any other 〈001〉 direction with
equal probability. In other words, the ground state is sixfold
degenerate. For the BT dot shown in figure 1(a), the toroidal
moment can be along any 〈111〉 direction, implying that the
ground-state vortex structure is eightfold degenerate.

Figure 5(a) presents the temperature dependence of the
toroidal moment, as obtained by the effective Hamiltonian
method for a 12 × 12 × 12 PZT60 nanodot under OC electric
boundary conditions. One can see that the toroidal moment
is null at high temperatures, while there is a temperature Tm

(around 600 K, here) below which the z-component of the
toroidal moment grows when further reducing the temperature
(note that the polarization is numerically found to vanish
for any temperature in this system). Tm is thus the highest
temperature at which the dipoles adopt a vortex structure. On
average, the local dipoles increase in magnitude upon cooling
below Tm, which explains why the z component of g grows
larger when decreasing the temperature below Tm.

Let us now briefly focus on ferroelectric rings rather than
cubic dots. In this case, the toroidal moment is found to
only very slightly increase when one first increases the internal
diameter from its minimal value; see figure 6 (this behavior
can be explained by the fact that the center of the dot does
not contribute much to the toroidal moment, according to the
simulations). It is only when the internal diameter becomes
rather close to the outer diameter that the toroidal moment
starts rapidly decreasing when further increasing the internal
diameter, as indicated by figure 6.
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Figure 5. Temperature dependence of the toroidal moment (a) and
homogeneous strain (b) in a stress-free 12 × 12 × 12 nanodot of
PZT60 under OC electrical boundary conditions. The temperature
has been rescaled to match the experimental Curie temperature of
bulk PZT.

5. Strain characteristics of dipole vortices in
zero-dimensional ferroelectrics

Figure 5(b) shows the temperature dependence of the
homogeneous strain, {ηH} (expressed in Voigt notation), in the
12 × 12 × 12 PZT60 nanodot under OC electric boundary
conditions. One can see that, below Tm, the strain undergoes
changes that are consistent with the appearance of the z-
component of the toroidal moment. The component of the
strain tensor associated with the direction of the vortex (i.e.,
ηH,3) is rather small, while ηH,1 = ηH,2 exhibit much larger
changes with temperature below Tm. One can also see that
ηH,3 is smaller than ηH,2 = ηH,1, below the temperature at
which the vortex pattern forms. In other words, the tetragonal
axial ratio c/a is lower than unity for the vortex in dots, which
contrasts with the axial ratio in tetragonal systems exhibiting
either a spontaneous polarization [27] or the condensation of
antiferrodistortive motions [33]. Such a unique strain feature
can be used to experimentally identify the vortex structure in
ferroelectrics. (Note that another unique feature associated
with a dipole vortex is its associated original electric field
pattern close to the dot, as revealed by [15].)

Interestingly, [15] also reported that the inhomogeneous
strain, {ηI}, exhibits striking features when a dipole vortex is
formed in a ferroelectric dot. For instance, it was numerically
found [15] that (1) ηI,1 is large in the regions of the dot having
dipoles oriented along x and −x , while it is much smaller in the

0
0 20 40 60

10

20

30

Dinternal (Å)

G
z 
(e

Å
2 )

Figure 6. The dependence of the toroidal moment on the Dinternal

internal diameter in nanotubes with height 56 Å and diameter 76 Å.

domains having the local modes in the y and −y directions—
because of the coupling between the dipoles making the vortex
and the strain [18]; and (2) ηI,1 and ηI,2 are maximal in the
center of the dot (as a result, cutting the core of the dot to make
it a ring decreases the maximal value of ηI,1 and ηI,2, which
can prevent the occurrence of cracks inside the dot, and thus
stabilize the vortex dipole structure).

6. Novel electromechanical coupling in
zero-dimensional ferroelectrics

In this section, a novel form of electromechanical coupling
in ferroelectric dots, arising from the coupling between the
toroidal toroidal moment and stress, is described [14]. To better
appreciate it, let us first recall basic facts about piezoelectricity
in a polar system. For this, it is useful to expand the
thermodynamic potential, �, in linear order of external fields
and stresses as a sum of four terms, following [34]. Such a
decomposition is shown in the left column of table 1. The
first and second terms correspond to the coupling between
the polarization, P, and applied electric field, E, and to the
coupling between the applied stress, σ , and the homogeneous
strain, ηH, respectively. The third energy involves the d
piezoelectric tensor, while the last term, �0, gathers all the
energies that are explicitly independent of both E and σ .
As indicated in table 1, minimizing the derivative of the
thermodynamic potential with respect to the applied field
yields the mathematical equality associated with the so-
called direct piezoelectric effect [34] (that characterizes the
polarization’s response to a stress). Similarly, the derivation of
� with respect to σ leads to the converse piezoelectric effect—
that represents the change of the shape of a material when
subject to an applied electric field [34].

Now, we turn to a dipole vortex. For the toroidic systems,
it is important to determine the thermodynamic potential
containing a toroidal moment rather than a polarization. In
particular, one may wonder how g enters such a potential, or,
equivalently, to which quantity g is linearly coupled to provide
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Table 1. Analogy between the d piezoelectric tensor in polar systems and the dg axial piezotoroidic tensor in materials exhibiting an electric
dipole vortex. �, P, E, σ , ηH, g and curl E represent the thermodynamic potential, polarization, electric field, stress, homogeneous strain,
toroidal moment and the cross-product ∇ × E, respectively. The tensor components are indicated in Voigt or matrix notation. The ‘eq’
subscript is used to indicate the value of the properties at equilibrium, that is before applying a field or a stress. Einstein conventions are used
for indicating the summations over j and i in the second and third rows.

Polarization Electric dipole vortex

� = −(P − Peq)E − (ηH − η
eq
H )σ + Edσ + �0 � = −(g − geq)(curl E) − (ηH − η

eq
H )σ + (curl E)dgσ + �0

d�/dE = 0 ⇒ Pi = Peq
i + di j σ j d�/dcurl E = 0 ⇒ gi = geq

i + dg
i j σ j

d�/dσ = 0 ⇒ ηH, j = η
eq
H, j + di j Ei d�/dσ = 0 ⇒ ηH, j = η

eq
H, j + dg

i j (curl E)i

a relevant energetic term. The answer to this question can
be found from [35], where the combination of all energetic
terms linear in g provides a coupling of g curl E with curl E,
denoting the cross-product ∇ × E. Analogy was used to derive
the third term of the thermodynamic potential for the materials
exhibiting an electric dipole vortex [14]. More precisely, a new
tensor, to be denoted by dg and connecting curl E and σ , should
exist in these materials, by analogy with the piezoelectric
tensor d connecting E and σ in polar systems. As displayed in
table 1, vanishing derivatives of � reveal that dg should both
characterize the response of the toroidal moment to an applied
stress (‘direct’ effect) and the change of shape when applying
an electric field with no vanishing curl—or, equivalently,
a time-dependent magnetic field—(‘converse’ effect). In
other words, dg represents a new kind of electromechanical
coupling that should occur in ferroelectric nanodots—which
may thus lead to the design of, e.g., transducers efficiently
working at the nanoscale. This tensor differs in nature from
the so-called polar piezotoroidic tensor introduced earlier for
magnetic vortices and that connects the electric current density
and strain [36, 37]. dg also differs in symmetry from this
polar piezotoroidic tensor, because (as already mentioned in
section 4) the symmetry differences between magnetic and
electrical dipoles imply that the toroidal moment in magnetic
systems is a polar vector [32] while such a moment is an
axial vector for the electric dipole vortices [30]. Based on
these distinctions, dg was named the ‘axial piezotoroidic’
tensor [14]. Technically, dg is an axial third-rank tensor—
like the mathematical tensor associated with the so-called
electrogyration effect [38]. As a result, and for instance, this
tensor, in matrix notation, has four independent components
for systems adopting a 4, 4/m or 4̄ point group [38]: dg

31 = dg
32,

dg
33, dg

15 = dg
24 and dg

14 = −dg
25.

The existence of this new tensor was confirmed, as
well as the sign and magnitude of its components being
determined, in [14] by performing effective Hamiltonian
Monte Carlo simulations on nanoparticles made of PZT60—
which is the material of choice for ‘traditional’ piezoelectric
applications. One convenient way to do this is to take
advantage of the fluctuation–dissipation theorem [24, 39, 40]
and of the outputs of the first-principles-derived approach
(namely, the toroidal moment and strain at different Monte
Carlo sweeps). Indeed, one can relate the axial toroidal
moment to statistical averaging in the Gibbs framework: g =
〈g〉 = ∑

μ gμ exp(−Uμ/kBT )/
∑

μ exp(−Uμ/kBT ), where
the index μ runs over the different possible states, kB is the
Boltzmann constant and U = U0−V g curl E−V σηH, with U0

0
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0.00
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200 400 600
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(e

/G
P

aÅ
)

31

33
14

15

Figure 7. Temperature dependence of the piezotoroidic coefficients
in a 12 × 12 × 12 stress-free nanodot of PZT60 under OC electrical
boundary conditions. The temperature has been rescaled to match the
experimental Curie temperature of bulk PZT.

gathering the terms of the internal energy that are independent
of curl E and σ . As analogous to the development of [39], it
is straightforward to prove that taking the derivative of g with
respect to σ leads to

dg
αβ = V

kBT
[〈gαηH,β 〉 − 〈gα〉〈ηH,β 〉] (3)

where ‘〈 〉’ denotes the average over the Monte Carlo sweeps.
Equation (3) provides an efficient computation of the axial
piezotoroidic tensor (that is, without applying any stress or
electric field).

Figure 7 displays the temperature dependence of the
independent elements of the axial piezotoroidic tensor for a
cubic 12×12×12 PZT60 nanodot under OC electric boundary
conditions, as predicted by the use of the first-principles-based
approach and equation (3). As shown in figure 5, decreasing
the temperature below Tm = 600 K generates a toroidal

6
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moment aligned along the z-axis (chosen to be parallel to
the pseudo-cubic [001] direction). The PZT nanodot thus
acquires a tetragonal symmetry with the 4/m point group,
below Tm. Figure 7 reveals that the axial piezotoroidic
effect indeed exists, below Tm, with the different non-zero
coefficients (being those determined by symmetry arguments
above) increasing (and nearly diverging) as the temperature
is increased towards Tm—similar to piezoelectricity below the
Curie temperature in ‘normal’ ferroelectrics [41]. In particular,
one can see that the largest components are dg

31 = dg
32 and

dg
15 = dg

24. This implies that devices made of PZT nanodots and
aimed at efficiently converting mechanical input to electrical
output should either use a stress applied along the x- and/or y-
direction and takes advantage of the significant change of the
toroidal moment along the z-direction, or apply a stress in the x
oz plane (respectively, y oz plane) and detect the formation of
the toroidal moment along the x (respectively, y) direction—
especially close to Tm. Note that the dg

33 component is rather
small, which indicates that a reasonable stress applied along the
z-axis is not going to significantly modify the toroidal moment.
Finally, dg

14 is found to vanish owing to an original symmetry
element—namely, that combining the mirror element in the
zx plane (and passing through the dot’s center) with the
simultaneous inversion of all the dipole moments leaves the
vortex structure unchanged.

Additional effective Hamiltonian computations were also
performed [14], in which a stress is directly applied to the
nanoparticle. Small values of stress lead to axial piezotoroidic
coefficients (calculated as the ratio between the change in
the toroidal moment over the stress, see table 1) identical
to those reported in figure 7. Moreover, a large enough
stress can cause the toroidal moment to change in direction.
For instance, applying a tensile uniaxial stress of 2 GPa
along the initial (z) direction of the toroidal moment at 10 K
results in the re-orientation of g from z to x or y axes,
with equal probability. In other words, the stress is also
capable of controlling the vortex’s chirality, because of the new
kind of electromechanical coupling that exists in ferroelectric
nanodots.

7. Other novel tensors in zero-dimensional
ferroelectrics

The axial piezotoroidic tensor is not the only new tensor
that can appear in ferroelectric nanostructures. For instance,
effective Hamiltonian simulations [14] revealed the existence
of the tensor defined as χ g = 1

ε0

∂g
∂curl E = − 1

ε0

∂g
∂Ḃ

, where ε0 is

the dielectric permittivity of vacuum and Ḃ is the derivative of
the magnetic field with respect to time [14]. By analogy with
the ‘normal’ dielectric susceptibility tensor, such a new tensor
was named as the electric toroidal susceptibility tensor [14]. It
was computed as [14]

χ
g
αβ = V

ε0kBT
[〈gαgβ〉 − 〈gα〉〈gβ〉], (4)

following the use of the fluctuation–dissipation theorem
[24, 39, 40]. Figure 8 shows the elements of the
electric toroidal susceptibility tensor versus temperature, for

0
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Figure 8. Temperature dependence of the toroidic susceptibility in a
12 × 12 × 12 stress-free nanodot of PZT60 under OC electrical
boundary conditions. The temperature has been rescaled to match the
experimental Curie temperature of bulk PZT.

a cubic 12 × 12 × 12 PZT60 nanodot under OC electric
boundary conditions—as predicted by the use of the effective
Hamiltonian approach and equation (4). These elements peak
at Tm, that is at the temperature for which the nanoparticle
acquires a toroidal moment (see figure 5(a)). Above this
temperature, the three diagonal elements of this tensor coincide
with each other, as consistent with the cubic symmetry. On the
other hand, because of the tetragonal symmetry of the ground
state, χ

g
xx = χ

g
yy > χ

g
zz , below Tm.

Figure 5(a) also tells us that the value of the toroidal
moment is sensitive to temperature below Tm. This
automatically implies that there is a tensor, pg, connecting the
Cartesian components of the toroidal moment with a change in
temperature. By analogy with the pyroelectric tensor (that links
polarization with a change in temperature in polar systems),
pg can be named the pyrotoroidic tensor. Interestingly, the
existence of pg may open a new way to design nanosensors
of infrared radiation. The existence of the pyrotoroidic tensor
also implies that applying different curl of electric field (in a
continuous way) in a system exhibiting electric dipole vortices
should produce a change in temperature (that is, generate a new
electrocaloric effect!) given by �T = − T

Ccurl E

∫
pg

i d(curl E)i ,
where Ccurl E is the heat capacity at a constant curl E—in
the same manner that applying different electric fields in a
polar system induces a change in temperature given by �T =
− T

CE

∫
pi dEi (see [34]), where CE is the heat capacity at a

fixed electric field.
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8. Phase transformation path from a vortex to a
ferroelectric state in zero-dimensional ferroelectrics

Let us now discuss the phase transformation path, induced by
homogeneous electric fields perpendicular to the vortex plane,
in nanoparticles made of the technologically important PZT50
solid solution [12]. For this, effective Hamiltonian calculations
were performed for PZT50 nanostructures of cylindrical shape
(including nanodisks and nanorods), with diameter d ranging
from 9 to 25 and height h = 14 (both are measured in units
of bulk pseudo-cubic lattice parameter a = 4.0 Å). The
crystallographic [001] direction was chosen as the cylindrical
z-axis, with the [100] and [010] directions as the x and y axes,
respectively. The initial dipole configuration of the vortex state
was obtained from annealing simulations with temperature
decreasing in small steps. A homogeneous electric field of
varied strength was applied along the +z direction at a fixed
temperature of 64 K.

Figure 9 depicts the collective behaviors of the toroidal
moment and net polarization that develop in a d = 19 nanodisk
as the strength of electric field varies. When the electric
field is small and below a critical value Ec,1 = 1.5 V nm−1,
the disk shows only a non-zero z-component of the toroidal
moment, Gz , while Gx and G y are null. The system in this
field region (E � Ec,1) thus retains the macroscopic toroid
symmetry as in zero field (this structure phase will be denoted
as phase I hereafter). As the field reaches Ec,1, Gz decreases
only slightly as compared to the initial zero-field value, and
meanwhile a large net polarization of 0.3 C m−2 develops.
In fact, this magnitude of polarization is that of bulk BT.
The vortex response of phase I is thus characterized by the
coexistence of strong toroid moment and large polarization,
both pointing along the cylindrical z-axis. It was further
numerically found that the toroid moment in phase I responds
to the E field by accurately following a quadratic scaling
law of Gz(E) = G0 − bE2, where G0 is the zero-field
Gz moment and b is determined to be 285.5 e Å

4
V−2 for

the d = 19 disk. (Note that this quadratic law leads to an
interesting suggestion, that is, when a ferroelectric nanodisk is
exposed to an alternating field E(t) = E0 cos ωt , the toroid
moment G(t) will respond with a double frequency 2ω, and
thus its radiation field can be separated from that of vibrating
polarization, which responds only with ω. The signal with 2ω

frequency may further indicate whether it is associated with
moment parallel or antiparallel to the z-axis, since the latter
field is phase shifted by π with respect to the external applied
field [31]. This suggestion may thus open an approach of
using electromagnetic fields of pulse lasers to probe and/or
read electric vortex state.)

The system behaves in a markedly different fashion when
the electric field exceeds Ec,1, manifested in figure 9 by the
occurrence of a non-zero G y component and simultaneously
a sharp decline of the Gz component. Being perpendicular
to the initial Gz moment, the appearance of the G y moment
deviates the system from a macroscopic cylindrical symmetry.
The nanodisk therefore undergoes a phase transformation to
a new structure of different symmetry (this new structure
will be denoted as phase II). Assuming that the dipoles
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Figure 9. Toroidal moment G (using the left vertical axis) and net
polarization Pz (using the right vertical axis) versus electric field in a
d = 19 stress-free PZT50 disk under OC electrical boundary
conditions. Arrows on the top horizontal axis indicate the selected
electric fields for which the dipole configurations are analyzed in
figure 10.

respond by collectively rotating toward the field direction, one
would anticipate that the drastic decrease of Gz would be
accompanied by a sharp rise in the polarization. Surprisingly,
the net Pz polarization in figure 9 apparently does not feel
the drastic variation of the toroid moment, and remains,
to the naked eye, fairly smooth. As the electric field
exceeds a second critical value Ec,2 = 2.8 V nm−1, all G
components vanish and the system becomes a phase of pure
polarization. The low-symmetry phase II thus acts as a key
intermediate state bridging the transformation from phase I
(of the same cylindrical symmetry as the initial vortex) to
the destination phase of uniform polarization (that also has
cylindrical symmetry).

Furthermore, figure 10 shows the dipole patterns for four
different fields, denoted as E1, E2, E3 and E4, respectively
(these fields are also indicated via arrows in figure 9). Looking
at the dipole patterns at E1 and E2 fields shows that the vortex
response in phase I is characterized by the collective rotation
of dipoles towards the field direction. Particularly, it was found
that this rotation process begins with (namely, is initiated by)
dipoles near the cylindrical axis, which is consistent with the
fact that a large strain exists in the vortex center [15] and that
the rotation reduces this strain energy. The rotation is found to
maintain cylindrical symmetry in the sense that dipoles within
the same distance from the central axis respond equivalently.

As the field slightly changes from E2 to E3, two striking
phenomena occur: (1) the dipole vortex in the xy plane shifts
from the center; (2) another lateral vortex—for which the
corresponding toroidal moment points along the y-axis—starts
to nucleate near the surface.

A further increase of electric field from E3 to E4 leads
to increasing the volume occupied by the new vortex and
simultaneously decreasing the volume occupied by the in-plane
vortex. The system at the E4 field is thus characterized by the
formation of a vortex-free ferroelectric region on one side—
and a vortex region with a toroidal moment about the y-axis

8
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z

y

x

x

Figure 10. Configurations of local dipoles on the central xy cross-section (lower panel) and on the central xz cross-section (upper panel) in
the d = 19 disk, at selected fields E1, E2, E3 and E4 as marked by the arrows in figure 9. The magnitude of each dipole is enlarged for clarity.

occurring on the other side. Interestingly, despite the fact that
the formation of the lateral G y vortex forces some dipoles
to point opposite to the field direction between E3 and E4

fields, the net Pz polarization nonetheless still increases, as
seen in figure 9. Finally, when the electric field continues to
further increase above E4, the ferroelectric region expands by
extruding the center of the G y lateral vortex toward the right-
side surface, and this G y vortex eventually disappears at the
critical Ec,2 field.

The presence of phase II (with a toroid moment rotated by
90◦ with respect to the initial Gz vortex) raises an interesting
question of what may happen when one starts with this phase
(e.g., at E = 2 V nm−1) and then decreases the electric field.
The simulations reveal that, regardless of whether the field
is gradually reduced or suddenly switched off, the system in
phase II does not transform back to the initial state of Gz

toroid moment, and instead is trapped in the G y vortex state.
More specifically, as the field is reduced, the G y vortex at the
E4 field in figure 10 grows by moving its core toward the
cylindrical axis (not toward the right-side surface), resulting
in a pure vortex state with a G y moment and P = 0. This
leads to a hysteresis, which is interesting in the sense that
(i) the hysteresis is caused by the toroidal moment, not the
polarization; (ii) it exists in a single particle of nanometer size;
(iii) during the hysteresis, the toroidal moment is rotated rather
than switched to the opposite direction. The G y and Gz phases
at zero field were further found to be very close in energy; the
latter is lower by ∼1 meV per five-atom unit cell. Trapping
of the system in the G y state also suggests that this state is
stable and surrounded by an energy barrier. To confirm this,
the system of the G y phase is heated at zero field to a chosen
temperature T̃ and then cooled down to 64 K. It was found that
only when T̃ is above 500 K is the G y phase able to overcome
the barrier and become the Gz phase.

Analysis showed that, in addition to the reduction of
the depolarizing field, there is another factor that facilitates
the transformation from phase I into phase II, that is, the
interaction between local mode and strain. At zero field,
the lattice of the vortex state is pseudo-tetragonal with a c/a
ratio less than unity, i.e., ηH,1 = ηH,2 > ηH,3, because all

dipoles are lying in the xy plane. As the field increases, the
c/a ratio rises as a result of the polarization–strain coupling.
Notably, the field at which c/a becomes unity (i.e. the system
becomes pseudocubic) is very close to the critical Ec,1 field
where phase I is transformed into phase II. The mode–strain
coupling − ∑

i |B|(ηH,1u2
i x + ηH,2u2

iy + ηH,3u2
i z) advances the

transition into phase II largely due to the increase in atomic
volume, �v/v0 = ηH,1+ηH,2+ηH,3, which is nearly a constant
in phase I and rises sharply for E > Ec,1.

9. Control of dipole vortices in zero-dimensional
ferroelectrics

It is important to realize that toroidic phases are usually
degenerated (e.g., the toroidal moment can be equivalently
parallel or antiparallel to the z-axis, that is, the vortex can
possess different chiralities). Let us imagine that a large
number of ferroelectric particles are arranged into regular
arrays, and that we know of a way of switching the chirality of
the vortex of any dot in this array (note that any dipole vortex
produces an electric field that has reasonably large values only
very close to the dots [15]—which implies that the vortex
structure in a single nanoparticle should thus be switchable
without modifying the states of its neighboring particles,
and thus that we avoid the so-called ‘cross-talk’ problem).
Consequently, the toroidal carriers of information can thus
be packed considerably more densely than the conventional
carriers of polarization, giving rise to a dramatic improvement
in the storage density of ferroelectric memories [8]. For
instance, the minimum diameter that was found to be able to
generate bistable toroid states is 3.2 nm [8]. This produces
an ultrahigh storage density of 60 Tbits inch−2, which is
five orders of magnitude (!) larger compared to current
nonvolatile ferroelectric random access memories’ capability
of 0.2 Gbits inch−2. Such a promising capability also far
surpasses the 1 Gbits inch−2 density of typical magnetic
recording.

In other words, the existence of dipole vortices in
zero-dimensional ferroelectrics holds tremendous promise for
nanotechnology, but, to fulfill such promise, one has to solve
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Figure 11. Predicted hysteresis loops in asymmetric stress-free PZT60 rings under OC electrical boundary conditions. Panels (a) and (b)
show the evolution of the polarization and electric toroidal moment, respectively, versus the applied homogeneous ac electric field. Insets
schematize the rings’ geometry and the dipole arrangement in the (x, y) plane for the states (i)—where i ranges from 1 to 4; see the text.

the challenging problem of controlling the vortices’ chirality.
As a matter of fact, electric vortices can not directly couple
with homogeneous electric fields [13, 15, 31, 37]. On the
other hand, the electric toroidal moment can directly interact
with curl E, according to classical electrodynamics [35]—
implying that one way to control vortices is via the application
of a curling electric field. A second possibility to control
electric dipole vortices and their chirality is by applying (static)
inhomogeneous electric fields, as revealed by the effective
Hamiltonian simulations of [13].

Here, we would like to focus on a third possibility (that
we found very promising, mostly because it should be easier
to technologically implement it) for the control of electric
vortices, that is by applying a homogeneous electric field to
ferroelectric nanodots that are asymmetric in shape [17]. For
this, an asymmetric nanoring made of PZT60, under stress-
free and OC boundary conditions, was considered in [17].
The height, and internal and external radii about the z-axis
(that lies along the [001] pseudo-cubic direction), of the
investigated rings were denoted by h, r and L, respectively.
Moreover, the center of the internal radius in any (001)
plane was allowed to shift along the x-axis (that lies along
the [100] pseudo-cubic direction) from the center of the
external radius by a distance to be called S—as indicated
in the inset of figure 11. The geometrical parameters in
the effective Hamiltonian computations were taken to be
h = 24 Å, L = 32 Å, r = 8 Å and S = 12 Å.
Practically, the total energy of equation (1) was used in
MD simulations to obtain the dipole configurations of the

studied ferroelectric nanosystem under an ac homogeneous
electric field of 10 GHz frequency5 and applied along the
y-axis.

Figure 11 displays the behavior of the y-component
of the polarization (Py) and of the z-component of the
electric toroidal moment (Gz) of the investigated asymmetric
ferroelectric nanoring as a function of the y-component of the
electric field (Ey), respectively, at a simulated temperature of
300 K. Practically, Ey varies between −5 × 108 V m−1 and
+5 × 108 V m−1 depending on the simulated time. The
insets of figure 11 display the schematization of four states of
particular interest in the ferroelectric nanoring. State (1) is a
vortex state characterized by a significantly negative Gz , that
is polarized and occurs for the largest negative field values.
State (2) differs from state (1) by having a much smaller
polarization and, especially, by forming two vortices: one
vortex that is reminiscent of state (1), and the second one that
has nucleated inside the dot and that is not only of smaller
dimension but also of opposite chirality to the first vortex.
Such a striking state can be classified as an antiferrotoroidic
pair state [16]. State (3) is also a vortex state like state
(1), but of opposite sign for its Gz and Py , and occurs for
the largest positive investigated fields. State (4) resembles
state (2) after reversing the chiralities of both the large and
small vortices. Figure 11 thus indicates that it is possible

5 Frequencies for the ac fields were chosen to be below the resonant
frequencies to be in the quasi-adiabatic regime. Such resonant frequencies
are numerically found to be in the order of THz for the studied ferroelectric
nanorings.
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to control the chirality of vortices by applying homogeneous
fields in asymmetric ferroelectric nanorings, via the transition
to intermediate (antiferrotoroidic) states, in the same manner
that a homogeneous magnetic field is able to control the
chirality of magnetic vortices in asymmetric ferromagnetic
rings, via the transition into intermediate (onion) states [6].
Interestingly, states (2) and (4) were found to first deform
themselves via the growth in size of their second vortex before
transforming into the vortex states (3) and (1), respectively.
Furthermore, no systematic controllable switching of the
vortex chirality was found [17] when applying homogeneous
electric fields in ferroelectric nanorings that are symmetric
(that is for which S = 0)—which undoubtedly indicates that
asymmetry is of crucial importance for the switching of the
vortex chirality by a homogeneous field. This leads to the
two following questions: (i) how can a homogeneous electric
field control ferroelectric vortices, respectively, while this field
is not allowed to directly couple with the electrical toroidal
moments [31]—as symmetry arguments tell us (the electric
field is a polar vector while the electric toroidal moment is
an axial vector); and (ii) why does such control only occur in
asymmetric systems?

To answer these questions, a vector, R, characterizing the
system’s asymmetry was first defined in [17]. For instance,
for the investigated asymmetric nanorings, the following vector
representing the asymmetry-induced shift in center of gravity
of the ring was introduced: R = xr 2S/(L2 − r 2), where x
is the unit vector along the x-axis. The cross-product of this
vector with the electric field, R × E, has exactly the same
symmetry as the electric g toroidal moment since both are axial
vectors. One can thus consider, on sole symmetry grounds, an
interaction energy in asymmetric ferroelectrics that is directly
proportional to (R × E) · g. Such an energy is non-zero in
the considered cases because (i) the dot is asymmetric (i.e., S
and thus R do not vanish), (ii) R is oriented along the x-axis,
while E is along the y-axis and g lies along the z-axis. The
existence of such a new energy was numerically confirmed
by performing calculations in which R and E are purposely
chosen to lie along the same axis (in this case, no possible
control of the chirality of the electric vortices was found) or
in which the magnitude of R is increased (in this case, we
need a smaller electric field for switching the vortex chirality).
Thus, R × E can be thought of as a field that can control the
chirality and magnitude of the electric toroidal moment, g, via
an interaction energy proportional to (R×E) · g in asymmetric
ferroelectrics.

Interestingly, this latter energy term also opens the way
for attractive new technologies, e.g. to make nanomotors from
asymmetric rings. As a matter of fact, purposely choosing a
R×E vector that does not initially lie along the same direction
as g will force the ring to rotate if this ring is free to do so—in
the same manner that a macroscopic magnet can rotate when
subject to a homogeneous magnetic field lying away from its
magnetization [42]. (Note that for a continuously rotating
nanomotor, the electric field must continue to rotate so that the
ring must follow. This statement must be qualified by the fact
that once the rotor is up to synchronous speed a field oscillating
along one axis will suffice.)

10. Embedded ferroelectric dots

All the results discussed and displayed so far concern isolated
zero-dimensional ferroelectrics. The aim of this section is to
discuss properties of dots made from one kind of perovskite
material, to be denoted by AB′′O3, that are rather embedded
into a matrix made from another kind of perovskite material,
to be denoted by AB′O3. The total energy of equation (1) was
extended by introducing a new energetic term that is related to
the onsite contribution of alloying [16]. Such a term involves
two different parameters for the AB′O3 and AB′′O3 systems,
that are denoted as κ(AB′O3) and κ(AB′′O3), respectively, and
that characterize the magnitude of the ferroelectric instability
of these two systems [18]. Note that the existences of these
two parameters are consistent with the direct first-principles
results of [43]. The ‘ferroelectric strength’ of AB′O3 and
AB′′O3 simple systems was artificially adjusted by playing
with the κ(AB′O3) and κ(AB′′O3) parameters. For instance,
a large negative (respectively, positive) κ(AB′′O3) leads to a
strong ferroelectric instability (respectively, no ferroelectric
instability) of the pure AB′′O3 material. In the following, we
will denote �κ as the difference between the two alloying-
onsite parameters, i.e. �κ = κ(AB′O3) − κ(AB′′O3). With
the exceptions of the adjustable κ(AB′O3) and κ(AB′′O3)

variables, all the parameters of this toy model are those
derived for the PZT50 solid solution from first-principles
calculations [20]. (Such parameters yield a tetragonal
ferroelectric ground state with a polarization pointing along
a 〈001〉 direction and a Curie temperature � 1000 K, in the
PZT50 bulk.) As a result, it was numerically found that
κ(AB′′O3) or κ(AB′′O3) � +0.0094 au is the highest value
to have a ferroelectric ground state in pure AB′O3 or AB′′O3

material, respectively.
Figure 12 shows the temperature-versus-�κ phase

diagram of a 16 × 16 × 16 periodic supercell (20 480
atoms, 64 Å lateral size) containing an AB′′O3 cubic dot of
48 Å lateral dimension embedded in a host matrix made of
pure AB′O3. Practically, for positive �κ , κ(AB′′O3) is set
to zero while κ(AB′O3) is allowed to vary. These cases thus
correspond to a specific ferroelectric dot immersed in different
media that are all ferroelectrically harder than the dot and that
can either be ferroelectric (small positive �κ) or paraelectric
(larger positive �κ). The reverse situation applies for the
case of negative �κ : κ(AB′′O3) is varied while κ(AB′O3)

vanishes, implying that either ferroelectric dots with smaller
ferroelectricity strength than the medium (for small negative
�κ) or paraelectric dots (for larger negative �κ) inserted
in a matrix made from a specific ferroelectric material were
mimicked.

Figure 12 reveals the existence of six different phases, for
which the associated dipole patterns are displayed in insets
(phase boundaries were practically determined by identifying
the peak or abrupt jumps of the susceptibilities altogether
with the appearance of the spontaneous polarization or toroidal
moment). Two of these phases are expected based on previous
knowledge of ferroelectrics: the paraelectric, PE, state at
high temperature, and the ferroelectric, FE1, phase occurring
at intermediate and low temperature when �κ is small in
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Figure 12. Temperature-versus-�κ phase diagram of a 12 × 12 × 12 AB′′O3 dot embedded in a AB′O3 medium within a 16 × 16 × 16
periodic supercell. The positive �κ part of this diagram corresponds to a soft ferroelectric dot immersed in a medium that is ferroelectrically
harder than the dot and that has a decreasing ferroelectric instability as �κ increases. The negative �κ part of this diagram corresponds to a
dot (having a ferroelectric instability that is weaker than those of the medium and that decreases, and then vanishes, as �κ increases in
magnitude) embedded in a ferroelectrically soft medium. The lines with symbols represent the phases’ boundaries. The insets show a (001)
cross-section of the dipole configuration in the different phases. Specifically, these insets correspond to atomistic calculations with the
following (�κ , temperature) combination: (−0.0212 au, 1 K), (−0.0212 au, 500 K), (0.0062 au, 1 K), (0.0087 au, 1 K) and (0.0112 a.u., 1 K)
for the FE3, FE2, FE1, FE1 + FT and FT phases, respectively. The dot surfaces are indicated via thick continuous lines in these insets. The
x- and y-axes are chosen along the pseudo-cubic [100] and [010] directions, respectively.

magnitude. In this FE1 state, both the dot and medium develop
homogeneous parallel dipoles—with these dipoles being larger
(smaller) in the dot than in the host when �κ is positive
(negative), as consistent with the definition of �κ (i.e. the
difference between the onsite parameters of the medium and
the dot).

Four phases of figure 12 can be considered as novel
structures. They are denoted as FT, FE1 + FT, FE2 and
FE3, respectively. The FT phase, which occurs for the
largest positive �κ values, exhibits a finite toroidal moment.
The appearance of this state in this region of the phase
diagram results from the fighting of the dipoles in the dot
against the large enough depolarizing field [7, 8, 11] (which
arises from the significant non-similarity between the ‘more
ferroelectric’ dot and ‘less ferroelectric’ host material). The
present discovery of this FT phase is, in fact, consistent with
the previous finding that isolated ferroelectric dots surrounded
by vacuum exhibit a vortex structure for their dipoles below a
critical temperature [7, 8, 11], because one can think of vacuum
as a medium having an infinite positive value for κ(AB′O3).
However, and unlike in the vacuum, the dipoles of the host
matrix in the FT phase become slightly polarized by the nearby
dipoles located inside the dots and near the surfaces, when this
host matrix is still rather ‘soft’ (see the corresponding inset of
figure 12). For such cases, the medium thus also generates
a toroidal moment that is parallel to, but of lower magnitude
than, the one solely associated with the dot.

Moreover, the FE1 + FT phase appearing in the phase
diagram at small temperature and within a narrow range

of positive �κ is rather remarkable because it displays an
unusual cohabitation between the toroidal moment and the
spontaneous polarization. In this phase, the medium generates
an electric field inside the dot, that (as in some magnetic
nanodots under an external magnetic field [44]) leads to the
shift of the vortex structure with respect to the center of the dot
(see the corresponding inset in figure 12) and thus activates
a polarization. Note, too, that this FE1 + FT phase can be
considered as a low-temperature bridging structure between
the FE1 and FT phases since it was numerically found that the
FE1-to-FE1 + FT and FE1 + FT-to-FT transitions are second
order in character, unlike the FT-to-FE1 phase transition
that displays all the expected features of a first-order phase
transition (e.g., the toroidal moment suddenly disappears at this
boundary in favor of a finite value of the polarization, and the
FT-to-FE1 boundary line has a rather large thermal hysteresis:
it is typically increased by �100 K with respect to the one
displayed in figure 12 when heating, rather than cooling).

The last two phases, FE2 and FE3, appearing in figure 12
are both ferroelectric and occur at intermediate and low
temperatures, respectively, for the largest negative values of
�κ . In other words, these two states correspond to cases for
which the dot, unlike the medium, is made of a material that
desires to be paraelectric. As a result, the FE2 phase exhibits
a spontaneous polarization that originates from the alignment
along a 〈001〉 direction of dipoles belonging to some specific
regions of the medium. More specifically, these regions belong
to the {001} planes that contain the polarization direction and

12



J. Phys.: Condens. Matter 20 (2008) 193201 Topical Review

that do not possess any site belonging to the dot (see, e.g.,
the corresponding inset of figure 12 for FE2 showing the
homogeneity of dipoles in the top and bottom planes, while
the parts of the medium located at the right and left sides of
the dot do not display any homogeneity for their dipoles). The
reason behind such a unique arrangement, in which the largest
dipoles in the medium intentionally avoid pointing towards the
dots, is once again the minimization of the depolarizing energy.
When decreasing the temperature, the FE2 phase transforms
into the FE3 state, that is associated with a polarization that
has now two non-vanishing components along two different
〈001〉 directions. More precisely, the corresponding inset of
figure 12 reveals that, in the FE3 phase, the top and bottom
parts of the medium exhibit dipoles that are similar in direction
to those in the FE2 phase, while dipoles located in the medium
at the right and left sides of the dot have dipoles aligned along
a perpendicular direction. Such a dipole arrangement arises,
once again, from a minimization of the depolarizing energy.
Interestingly, the FE2 and FE3 phases bear resemblance
to some states that were experimentally found recently in
artificially constructed magnets [45]. Moreover, note that it
was numerically found that another solution (but of slightly
higher energy than that of the FE3 phase) is possible at low
temperature for large negative �κ : it consists of the top and
bottom parts of the medium having dipoles homogeneously
aligned a specific 〈001〉 directions (as in the FE2 phase) while
the dipoles of the medium located on the right and left sides of
the dot form a vortex structure.

It was also numerically checked that all the phases of
figure 12 still occur when varying the size of the dot or the
size of the whole supercell [16]. Moreover, of these six
states, the FT and FE1 + FT phases are the sole structures
that refine themselves when allowing several AB′′O3 dots to be
present in a supercell possessing a AB′O3 medium. For large
enough positive �κ , neighboring dots have vortices rotating
in an opposite fashion [16]. In other words, the FT and
the FE1 + FT phases of figure 12 should in fact become the
AFT and FE1 + AFT states shown in figure 13, respectively,
when dots are close enough to each other (as in the above
dots’ arrays). Such novel antiferrotoroidic phases, unlike the
FT and FT+FE1 states, allow the dipoles located between
two adjacent dots to all point along similar directions, which
minimizes the corresponding domain wall energy at the cost
of the electrostatic interaction between neighboring vortices (it
was numerically found that the direct electrostatic interaction
between two different toroidal moments should align these
moments along the same direction—that is, it should lead
to a ferrotoroidic, rather than antiferrotoroidic, order [15]).
Furthermore, the centers of the vortices in the FE1 + AFT
phase form a rather unusual lattice (see, e.g., that the centers of
the vortices have different y-locations for dots that are adjacent
along the x-axis). This unique geometry originates from the
desire of the whole system to maximize the number of its
dipoles (in the dots) lying along the polarization direction,
considering the underlying antiferrotoroidic order.

Interestingly, the various dipole patterns of embedded
dots, and their corresponding different susceptibilities, may
lead to the design of materials possessing a negative index of

a

b

Figure 13. (001) cross-sections of the dipole configuration in the
AFT and FE1 + AFT phases in panels (a) and (b), respectively, for
four 12 × 12 × 12 AB′′O3 dots embedded in a AB′O3 medium within
a 32 × 32 × 32 periodic supercell. Such cross-sections specifically
correspond to atomistic calculations for which the (�κ , temperature)
combination is (0.0112 au, 1 K) and (0.0087 au, 1 K) for the AFT
and FE1 + AFT states, respectively. The dots’ surfaces are
represented by thick continuous lines. The x- and y-axes are chosen
along the pseudo-cubic [100] and [010] directions, respectively.

refraction—which is of technological importance [46] because,
e.g., it makes an object opaque to external radiations.

11. Conclusions

In summary, we have reviewed some recent articles
[7, 8, 11–17] devoted to the study of dipole vortices in
zero-dimensional ferroelectrics, via the use of the effective
Hamiltonian method described in section 2. In particular,
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we discussed the dependency of the morphology of these
vortices on the size and shape of the nanoparticle, on the
material from which the nanoparticle is made, its electrical
boundary conditions and its surroundings (that is, isolated
nanoparticles versus particles embedded in a polar matrix).
We also emphasized that dipole vortices exhibit unique strain
characteristics (as well as briefly mentioning that they also
produce an original electric pattern), which can be put to use
to experimentally find these vortices’ structures. The need to
use the electric toroidal moment as the right order parameter
to describe the formation and evolution of these vortices was
also discussed at length. Moreover, the existence of various
tensors of fundamental and technological interest (e.g. the
piezotoroidic, electric toroidal susceptibility and pyrotoroidic
tensors), and linking the toroidal moment to other physical
quantities, was also established. We also described in detail
an original path between the vortex and ferroelectric/polarized
states, and discussed original ways of controlling the chirality
of the dipole vortices. We thus hope that this review will
be of high benefit to scientists and engineers working in the
fascinating field of dipolar nanostructures.
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